573 research outputs found

    Cross-lingual Entity Alignment via Joint Attribute-Preserving Embedding

    Full text link
    Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation to eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation

    In Situ Characterisation of Permanent Magnetic Quadrupoles for focussing proton beams

    Full text link
    High intensity laser driven proton beams are at present receiving much attention. The reasons for this are many but high on the list is the potential to produce compact accelerators. However two of the limitations of this technology is that unlike conventional nuclear RF accelerators lasers produce diverging beams with an exponential energy distribution. A number of different approaches have been attempted to monochromise these beams but it has become obvious that magnetic spectrometer technology developed over many years by nuclear physicists to transport and focus proton beams could play an important role for this purpose. This paper deals with the design and characterisation of a magnetic quadrupole system which will attempt to focus and transport laser-accelerated proton beams.Comment: 20 pages, 42 figure

    Supercooled confined water and the Mode Coupling crossover temperature

    Full text link
    We present a Molecular Dynamics study of the single particle dynamics of supercooled water confined in a silica pore. Two dynamical regimes are found: close to the hydrophilic substrate molecules are below the Mode Coupling crossover temperature, TCT_C, already at ambient temperature. The water closer to the center of the pore (free water) approaches upon supercooling TCT_C as predicted by Mode Coupling Theories. For free water the crossover temperature and crossover exponent γ\gamma are extracted from power-law fits to both the diffusion coefficient and the relaxation time of the late α\alpha region.Comment: To be published, Phys. Rev. Lett., 4 pages, 3 figures, revTeX, minor changes in the figures, references added, changes in the tex

    X-ray Absorption Near-Edge Structure (XANES) at the O K-Edge of Bulk Co<sub>3</sub>O<sub>4</sub>: Experimental and Theoretical Studies

    Get PDF
    We combine theoretical and experimental X-ray absorption near-edge spectroscopy (XANES) to probe the local environment around cationic sites of bulk spinel cobalt tetraoxide (Co3O4). Specifically, we analyse the oxygen K-edge spectrum. We find an excellent agreement between our calculated spectra based on the density functional theory and the projector augmented wave method, previous calculations as well as with the experiment. The oxygen K-edge spectrum shows a strong pre-edge peak which can be ascribed to dipole transitions from O 1s to O 2p states hybridized with the unoccu- pied 3d states of cobalt atoms. Also, since Co3O4 contains two types of Co atoms, i.e., Co3+ and Co2+, we find that contribution of Co2+ ions to the pre-edge peak is solely due to single spin-polarized t2g orbitals (dxz, dyz, and dxy) while that of Co3+ ions is due to spin-up and spin-down polarized eg orbitals (dx2−y2 and dz2 ). Furthermore, we deduce the magnetic moments on the Co3+ and Co2+ to be zero and 3.00 μB respectively. This is consistent with an earlier experimental study which found that the magnetic structure of Co3O4 consists of antiferromagnetically ordered Co2+ spins, each of which is surrounded by four nearest neighbours of oppositely directed spins

    Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions

    Get PDF
    We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I

    Discriminating between Cognitive and Supportive Group Therapies for Chronic Mental Illness

    Get PDF
    This descriptive and comparative study employed a Q-sort process to describe common factors of therapy in two group therapies for inpatients with chronic mental illness. While pharmacological treatments for chronic mental illness are prominent, there is growing evidence that cognitive therapy is also efficacious. Groups examined were part of a larger study comparing the added benefits of cognitive versus supportive group therapy to the treatment milieu. In general, items described the therapist’s attitudes and behaviors, the participants’ attitudes and behaviors, or the group interactions. Results present items that were most and least characteristic of each therapy and items that discriminate between the two modalities. Therapists in both groups demonstrated good therapy skills. However, the cognitive group was described as being more motivated and active than the supportive group, indicating that the groups differed in terms of common as well as specific factors of treatment

    Morphology of supported polymer electrolyte ultra-thin films: a numerical study

    Full text link
    Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed

    Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics

    Get PDF
    Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125 Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and SPC/E water. Channel and bath currents were computed from ten 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration-dependent and superlinear at high concentrations.Comment: Accepted for publication in Biophysical Journa
    corecore